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The results are presented of Nusselt number calculations for bodies
of different geometrical shape located in an infinite medium, the
surface temperature of the bodies being functions of time. A number
of particular cases are investigated.

In order to solve various practical problems, we
require a description of unsteady heat transfer for
bodies of different geometrical shape located in an
infinite medium.

Where there is conductive heat transfer with the
surrounding medium, and a given law of body sur-
face temperature variation with time, the problem in
question reduces to the following differential equa-
tion:
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The initial conditions are
=0, 8 =0. (2)
The boundary conditions are

t=1, O =g, (3)
t> o, ©-0. (4)

Here ® = (T — T )AT, — T, ) is temperature; 7=
= at/r? is time; 5 = x/r is a coordmate

The parameter n, which characterizes the geo-
metry of the system, appears in the problem. With
n =0; 1; 2 we have, respectively, an infinite plate of
thickness 2r, a cylinder of infinite length and finite
radius, and a sphere.

From the solution of the problem we may then find
the heat flux through the body surface (¢ = 1), while
the external heat transfer is described by the Nusselt
number

This problem has been stated in the literature. For
instance, in [1], with the help Karman-type integral
relations, an approximate expression is derived for
calculating the Nusselt number in the sphere case;
this has the form
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where ¢ 7y = ({ qoz(z) dZ/T) .

The method of [1] is very approximate, however,
and is used, as will be shown below, only for a
bounded class of functions.

In the present paper, for arbitrary type of functions
@ (1) satisfying conditions (2), this problem is solved
by the methods of operational calculus.

Leaving out intermediate calculations, the final
result has the form
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n=2 Nu=14 _ e dz, (7)
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where I; and N, are zeroth-order Bessel functicns of
the first and second kind. The integro-differential re-
lations for the Nusselt number are written in the form
of Duhamel integrals [2].

By assigning a definite form of functions ¢ (1), we
may find the Nusselt number from these relations for
each particular case.

Let us examine some examples of one of the sim-
plest cases—spherical symmetry (n = 2),

1, Let

Py = k7™, (8)

where m is any positive integer. Then, using (7), we
have
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From this it follows that, in the case of a power
law of surface temperature variation of type (8), for
any value of m, the value of Nu is independent of the
coefficient of proportionality k, and limooNu =1, i.e.,
steady heat transfer to or from the surrounding me-
dium is possible, We note that the steady heat trans-
fer region sets in earlier (smaller value of 7), the
smaller m is.

At the same time, in a given case, we may obtain,
by the method of [17,*
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i.e., the error in calculating Nu by the method of [1]
increases with increase of m. Calculations show that
even for a square law of surface temperature varia-
tion (m = 2), A = 55%,
2. Let us put
Py = Asinor, 10)
i. e., the body surface temperature contains harmonic

oscillations of amplitude A and frequency w. Then the
integral

Asinoz dz =A‘/ smmr-C(M)—cosm-S(m,],
VJ'E (v —2)
JoT
where C g, = Va/i [ cos t’dt and S(wT) = V2/T X
0
VT
x [ sint?dt are Fresnel integrals,
0
The heat flux through the body surface 5 E - is
in this case 99 l = ~-Nu®
8¢ lg=
201 _ _ 4 Isinot + 1 20 x
0L je=1
X (cos @t - Crury + sin mr-S(mT))}. (11)

*Nuy is the value of the parameter calculated by
the method of [1].
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For steady oscillations (w7 > 1) we may put S(CUT) =
=Cwm) = 1/2, and (11) takes the form
20 _ _ Assin{ot + @), 12)
08 |e=t

where A, = AV1 +VZw + w and ¢ = arc tg (1 +V2/w ).
When w > 2 arc tg (1 +V2/w) = n/4 and 55—
. K :
= —A, sin ( 4
Thus, in the case of sinusoidal oscillations of body
surface temperature, the heat flux also contains
harmonic oscillations, but with amplitude A and phase
shift ¢, dependent on frequency of oscillation w, i.e.,
in this case steady heat transfer is impossible,
The Nu number for arbitrary time will have the
form

+ T

Nu =1+ 20 [S(ur +ctgwt - Clanl. (13)

The value of Nu, proves to be
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, or limNu; =1,
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i.e., in this case the method of [1] gives a result that
is wrong in principle.

3. Let
Pry = €XpT 1. (14)
Then
T
I = M—dz:-—21/1—+]/:?expr-erf V1),
Vi—z
9 VT
where erf (V7)) = = [ exp (—t?) dt is the error
0

integral.
The Nu number is

expr

Nu —1-- erf (V) , (15)

expt—1

or 71_i_r.n°oNu =2,

Thus, in the case of a power law of type (14) for
body surface temperature variation, the heat flux,
96
¢ £=1
intensity is twice as large as in steady heat transfer,

By the method of [1] we obtain

in the limit as T— , is = -2, i,e., its

expt-—I1 .
Nuyy=1+ and lim Nu;=
! l/ 3 Viexpt—2F +1—1 tew

—11+/2 —1815,
TV 3

i.e., the error of this method is insignificant (~ 9%)
only at large values of time; at small times it may be
appreciable,
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NOTATION

T —~variable temperature; x~coordinate; t—time; T ~value of
temperature when X — «; r~characteristic body dimension; Ty~
temperature on body surface; A—thermal conductivity; a~thermal
diffusivity; a—external hear transfer coefficient.
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